Evaluation of Smile Detection Methods with Images in Real-World Scenarios

نویسندگان

  • Zhoucong Cui
  • Shuo Zhang
  • Jiani Hu
  • Weihong Deng
چکیده

Discriminative methods such as SVM, have been validated extremely efficient in pattern recognition issues. We present a systematic study on smile detection with different SVM classifiers. We experimented with linear SVM classifier, RBF kernel SVM classifier and a recentlyproposed local linear SVM (LL-SVM) classifier. In this paper, we focus on smile detection in face images captured in real-world scenarios, such as those in GENKI4K database. In the meantime, illumination normalization, alignment and feature representation methods are also taken into consideration. Compared with the commonly used pixel-based representation, we find that local-feature-based methods achieve not only higher detection performance but also better robustness against misalignment. Almost all the illumination normalization methods have no effect on the detection accuracy. Among all the SVM classifiers, the novel LL-SVM is verified to find a balance between accuracy and efficiency. And among all the features including pixel value intensity, Gabor, LBP and HOG features, we find that HOG features are the most appropriate features to detect smiling faces, which, combined with RBF kernel SVM, achieve an accuracy of 93.25% on GENKI4K database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of smile correction in mineral detection on hyperion data

This work aims to extract the mineralogical constituents of the Lahroud Hyperion scene situated in the NW of Iran. Like the other push-broom sensors, Hyperion images suffer from spectral distortions, namely the smile effect. The corresponding spectral curvature is defined as an across-track wavelength shift from the nominal central wavelength, and alters the pixel spectra. The common “column me...

متن کامل

A New Method for Sperm Detection in Infertility Cure: Hypothesis Testing Based on Fuzzy Entropy Decision

In this paper, a new method is introduced for sperm detection in microscopic images for infertility treatment. In this method, firstly a hypothesis testing function is defined to separate sperms from plasma, non-sperm semen particles and noise. Then, some primary candidates are selected for sperms by watershed-based segmentation algorithm. Finally, candidates are either confirmed or rejected us...

متن کامل

A new descriptor of gradients Self-Similarity for smile detection in unconstrained scenarios

Smile detection is a sub-problem of facial expression recognition field, which has attracted more and more interests from researchers because of its wide application market. As for smile detection problem itself, the ‘wild’ unconstrained scenario is more challenging than the laboratory constrained scenario. Therefore, in this paper, we mainly focus on solving smile detection problem in unconstr...

متن کامل

A New Method for Root Detection in Minirhizotron Images: Hypothesis Testing Based on Entropy-Based Geometric Level Set Decision

In this paper a new method is introduced for root detection in minirhizotron images for root investigation. In this method firstly a hypothesis testing framework is defined to separate roots from background and noise. Then the correct roots are extracted by using an entropy-based geometric level set decision function. Performance of the proposed method is evaluated on real captured images in tw...

متن کامل

ارزیابی تأثیر اندازه باکال کوریدور و میزان نمایش دندان- لثه در جذابیت لبخند در میان دو جمعیت دانشجویی

  3- Dentist   Background and Aims: An attractive, well-balanced smile is a paramount treatment objective of the modern orthodontic therapy. The purpose of this study was to determine the effects of the buccal corridor size and tooth-gingival display on the smile esthetics as perceived by two groups of the students.   Materials and Methods: A colored image of a woman frontal posed smile was sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014